Given a string containing just the characters'('and')', find the length of the longest valid (well-formed) parentheses substring.
For"(()", the longest valid parentheses substring is"()", which has length = 2.
Another example is")()())", where the longest valid parentheses substring is"()()", which has length = 4.
方案1:DP,dp[i]代表从索引i到末尾最长的有效括号组合的长度。
dp[s.length()-1]=0;从后向前逆向求解dp[i],
- 如果s[i]=')',则显然dp[i]=0;
- 如果s[i]='(',跳过dp[i+1]这段长度从j=i+1+dp[i+1]开始,如果j没越界并且s[j]='0',正好和s[i]匹配,则dp[i]=dp[i+1]+2;另外此时可能j之后的也可以连上,所以,可能要加上dp[j+1];
public class Solution { public int longestValidParentheses(String s) { if (s == null || s.length() < 2) return 0; int max = 0; int[] dp = new int[s.length()]; dp[s.length() - 1] = 0; for (int i = s.length() - 2; i >= 0; i--) { char ch = s.charAt(i); if (ch == '(') { int j = i + 1 + dp[i + 1]; if (j < s.length() && s.charAt(j) == ')') { dp[i] = dp[i + 1] + 2; if (j + 1 < s.length()) dp[i] += dp[j + 1]; } } max = Math.max(max, dp[i]); } return max; } public static void main(String[] args) { System.out.println(new Solution().longestValidParentheses("(((()(()")); }}
方案2:stack,时空复杂度都是O(n)。依次遍历字符串中的字符。如果是'(',压栈索引。如果是')',分情况讨论:
- 如果此时栈为空,表示前面没有需要匹配的或者前面已经计算完毕,')'不可能作为新的计算开始点,所以更新start为')'的索引+1.(start 表示当前能构成合法括号组合的起始处)
- 如果此时栈不空,则出栈,若此时栈为空,则表示当前匹配,更新结果为当前索引-start+1; 若此时不为空,则表示从此时栈顶元素下一位到当前索引是合法的,更新结果为当前索引-栈顶元素索引。
方案2:
import java.util.Stack;public class Solution { public int longestValidParentheses(String s) { if (s == null || s.length() < 2) return 0; Stackstack = new Stack (); int start = 0; int max = 0; for (int i = 0; i < s.length(); i++) { char ch = s.charAt(i); if (ch == '(') stack.push(i); else { if (stack.isEmpty()) start = i + 1; else { stack.pop(); if (stack.isEmpty()) max = Math.max(max, i - start + 1); else max = Math.max(max, i - stack.peek()); } } } return max; } public static void main(String[] args) { System.out.println(new Solution().longestValidParentheses("()()()))(()))(")); }}
参考: